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Abstract: In this paper, we report on experiments on deployment of an extended distance-aware KinFu algorithm, de-
signed to generate 3D model from Kinect data, onto depth frames extracted from stereo camera data. The
proposed idea allows to suppress the Kinect usage limitation for outdoor sensing due to the IR interference
with sunlight. Besides this, exploiting the stereo data enables a hybrid 3D reconstruction system capable of
switching between the Kinect depth frames and stereo data depending on the quality and quantity of the 3D
and visual features on a scene. While the nature of the stereo sensing and the Kinect depth sensing is com-
pletely different, the stereo camera and the Kinect show similar sensitivity to distance capturing. We have
evaluated the stereo-based 3D reconstruction with the extended KinFu algorithm with the following distance
aware weighting strategies: (a)weight de®nitionto prioritize importance of the sensed data depending on
its accuracy, and (b)model updatingto decide about the level of in¯uence of the new data on the existing 3D
model. The qualitative comparison of the resulting outdoor 3D models shows higher accuracy and smoothness
of models obtained by introduced distance-aware strategies. The quantitative analysis reveals that applying
the proposed weighting strategies onto stereo datasets enables to increase robustness of the pose-estimation
algorithm and its endurance by factor of two.

1 INTRODUCTION

Accurate 3D reconstruction and mapping has been ad-
dressed as a vital topic and is playing a prominent role
in such important research domains as 3D shape ac-
quisition and modelling, surface generation and tex-
turing, localization and robot vision (Engelhard et al.,
2011; Newcombe et al., 2011a; Steinbrucker et al.,
2011; Whelan et al., 2012a; Whelan et al., 2013).
During recent years, the advent of powerful general-
purpose GPUs has resulted in the ®rst generation of
real-time 3D-reconstruction applications which use
depth data obtained from a low-cost depth Kinect sen-
sor (PrimeSense; Kinect; Asus) to generate 3D geom-
etry for relatively large and complex indoor environ-
ments (Newcombe et al., 2011b; Izadi et al., 2011;
Bondarev et al., 2013; Whelan et al., 2012b; Whelan
et al., 2012a; Whelan et al., 2013). Since the depth
sensor is based on projected Infra-Red (IR) patterns,
it is almost impossible to sense outdoor scenes during
daylight. This can be explained by the IR interfer-
ence of the sensor and the sunlight. While the Kinect
is unable to sense the outdoor environments, a stereo
camera can provide depth data for an outdoor scene
and can be potentially used by the KinFu algorithm to

reconstruct 3D model of outdoor environment.

The most prominent real-time 3D reconstruction
applications, such as KinectFusion (Newcombe et al.,
2011b; Izadi et al., 2011), Kintinious (Whelan et al.,
2012b), the open source KinFu (PCL, 2011) and
KinFu Large Scale (Bondarev et al., 2013), utilize
the low-cost depth sensor (Newcombe et al., 2011b;
Izadi et al., 2011) to sense the environment and re-
construct the corresponding 3D model based on the
TSDF voxel-model. While recent evaluation of the
Kinect intrinsics has revealed relative robustness to
ambient light, incidence angle, and radiometric in¯u-
ences, the important sensor limitation is the low ac-
curacy for large distance measurements (Chow et al.,
2012; Khoshelham, 2011; Khoshelham and Elberink,
2012). Since the default weighting strategy of the
TSDF model is not capable to preserve more accurate
data against less accurate data, an improved approach
has been proposed by introduction ofweight de®ni-
tions and updating strategies(Javan Hemmat et al.,
2014a). The resulting improvements in model qual-
ity (Javan Hemmat et al., 2014a) and pose-estimation
accuracy (Javan Hemmat et al., 2014b) obtained by
these strategies, have motivated us to extend the ap-
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proach to the domain of stereo sensor data.
In this paper, we extend the capability of KinFu

to fuse data from stereo sensors, which enables 3D
model reconstruction of outdoor scenes. We evalu-
ate the impact of the distance-aware weighting strate-
gies on the quality of the resulting KinFu 3D model
obtained from the stereo-based depth data. For this,
we generate depth data from the input stereo camera
data and feed the depth data to the extended distance-
aware KinFu algorithm. Finally, we perform quanti-
tative and qualitative comparison of the obtained 3D
models against models generated by the conventional
KinFu algorithm.

The paper is structured as follows. Section 2 de-
scribes the extended weighting strategies. Section 3
elaborates on performed experiments. Section 4 pro-
vides analysis and discussion of the results. Section 5
concludes the paper.

2 WEIGHTING STRATEGIES

2.1 Conventional TSDF Model

In the original TSDF model (Curless and Levoy,
1996) of the conventional applications (Newcombe
et al., 2011b; Izadi et al., 2011; PCL, 2011), each
voxel contains a pair ofdistance value(Di) andac-
cumulated weight(Wi), describing the truncated dis-
tance value to the closest surface and the weight for
this value, respectively. This data structure enables
averaging of the captured depth data, in¯uencing the
voxel model afteri frames. For the(i+1)th depth
frame, the model is updated by the corresponding pair
of distance value (di+ 1) and weight (wi+ 1) for voxelx,
using the following two equations:

Di+ 1(x) =
Wi(x)Di(x)+ wi+ 1(x)di+ 1(x)

Wi(x)+ wi+ 1(x)
; (1)

Wi+ 1(x) = Wi(x)+ wi+ 1(x) : (2)

Parameterdi is the calculated distance value for voxel
x based on the corresponding newly sensed valid
depth point, andwi is the weight of the depthdi .
Depthdi is integrated into the corresponding voxelx
based on Equation (1). The weight for voxelx is ac-
cumulated inWi according to Equation (2). Choosing
wi+ 1 = 1 for each valid point found in the(i + 1)th
frame, results in simple averaging over time. Unfor-
tunately, according to our experiments, the constant
value for the weight affects the synthetic model up-
dating process in the following way. The objects in
the model located close to the sensor (� 1:5 m) are
created properly, while the objects located at a� 2:5

m distance are being melted, signi®cantly deformed
or even completely destroyed.

2.2 Distance-related weight De®nition
and Updating Strategies

In this paper, we utilize the weight de®nition which
has been already proposed in (Javan Hemmat et al.,
2014a; Javan Hemmat et al., 2014b) to guarantee the
assignment of higher weights to points in the scene
located on closer distances to the sensor. Based on
the sensor features and scene characteristics, there is
a valid range for depth data, de®ned between a maxi-
mum and a minimum distance,dmax anddmin, respec-
tively. In addition, the weight is bounded between 0
and a maximum weightWmax. The following equation
de®nes a weight based on the distance to the sensor,
specifying

weightdepth point(x) =

0

@
1

d(x)2  1
d2

max

1
d2

min
 1

d2
max

1

A � Wmax : (3)

For each depth valuex with distanced(x) in the
valid range betweendmin anddmax, the corresponding
weight is mapped to a value between 0 andWmax.

In conventional TSDF model implementations,
the model is straightforwardly updated with constant-
weight strategy (weight value is unity). The weight
de®nition, introduced by Equation (3), enables us
to distinguish between closer and further distances.
Therefore, we can exploit this weight de®nition to in-
telligently update the TSDF model. The intelligent
update prevents more accurate values being overwrit-
ten by less accurate data. This updating strategy guar-
antees that the synthetic 3D model is updated by the
most accurate data available during the update pro-
cess.

Distance-Aware (DA) updating Method

Each voxel value in the synthetic 3D model is up-
dated based on a straightforward intelligent rule:ªif
a voxel value has already been updated by a distance
value with a higher weight, never update it again by a
depth distance with a lower weightº. The DA updat-
ing method is formulated as:

Flag(v;x) = weightnew(x) � r%� weightLMU (v);
(4)

Update(v;x) =
�

Integratex into v if (Flag(v;x)) ;
Discardx; keepv otherwise:

(5)
To make the updating method more robust to

noise, there is a tolerance range,r indicating a per-
centage with 0� r � 100. Since the distance val-
ues are compared tor% of the last maximum updated

�(�Y�D�O�X�D�W�L�R�Q���R�I���'�L�V�W�D�Q�F�H���$�Z�D�U�H���.�L�Q�)�X���$�O�J�R�U�L�W�K�P���I�R�U���6�W�H�U�H�R���2�X�W�G�R�R�U���'�D�W�D
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weight, the distance values less than the last max-
imum updated weight are therefore integrated into
the synthetic 3D model. This method integrates the
distance values close to the last maximum updated
weight affected by noise.

Due to intrinsics of the conventional TSDF imple-
mentation, the DA method suffers from fast satura-
tion of accumulated weight value, which limits proper
truncated-distance averaging over a long sensing pro-
cess. To eliminate this constraint, the DASS method
has been introduced as below (Javan Hemmat et al.,
2014a; Javan Hemmat et al., 2014b).

Distance-Aware Slow-Saturation (DASS)
updating Method

The DASS method performs similar to the DA
method, except for the weight accumulation. The
DASS uses the weight de®nition of Equation (3) for
theU pdate(v;x) function to conditionally update the
synthetic 3D model, similar to the DA method. How-
ever, in contrast with the DA method, the DASS uses
unity for the new weightwi+ 1, to calculate the weight
accumulation valueWi+ 1. This solution ofwi+ 1 = 1
in the DASS method prevents the fast saturation of
the accumulated weight value, while theU pdate(v;x)
function ensures an intelligent updating process.

3 EXPERIMENTS

3.1 Implementation

To implement the proposed updating methods, we
have exploited the original framework of the open
source KinFu implementation from the Points Cloud
Library (PCL, 2011). We have reused the original
structure and only inserted the new de®nitions and up-
dating algorithms as discussed above.

3.2 Dataset

For datasets, we have chosen three outdoor statues lo-
cated in our campus and recorded them by a stereo
camera during daylight, which would not be possi-
ble with the Kinect sensor. We have generated depth
maps from the obtained stereo data and adopted the
maps to the Kinect depth format. Figure 1 shows the
statues and their corresponding depth frames.

3.3 Evaluation Approach

Due to absence of ground-truth models, the qual-
ity evaluation of models obtained from the original

KinFu, DA, and DASS methods is purely based on
visual assessment. It is known that in the KinFu al-
gorithm, a reset of the 3D modeling occurs in case
of large errors in the pose-estimation algorithm. The
pose-estimation accuracy is mutually dependent on
the quality of reconstructed model. Besides the qual-
itative issues, for a quantitative evaluation, we com-
pute the number of resets and also the endurance in-
terval length before the ®rst reset occurs during the
3D reconstruction process, as an indicator of the pose-
estimation accuracy.

4 ANALYSIS AND DISCUSSION

According to the results shown in Figure 2, the most
interesting ®nding is that the KinFu-based 3D recon-
struction algorithm works well on the outdoor data
provided by a stereo camera, which is nearly impos-
sible to achieve with the Kinect sensor data during
daylight time.

Figures 2.B-D show that for all datasets, the DA
and DASS methods are able to preserve the model
and avoid deformation, in contrast with the original
KinFu algorithm. The original KinFu easily degrades
the model by overwriting the more accurate data with
less accurate data. This also proves that the stereo
depth data is clearly sensitive to the distance.

Comparing the DA and DASS methods, especially
for the third dataset (sword®sh), we can conclude the
DASS method provides a more smooth and accurate
3D model. This can be explained by a fast saturation
of accumulated weights in the DA method, which pre-
vents proper temporal averaging of the depth data.

As a quantitative evaluation illustrated in Table 1,
the average number of resets caused by the DASS
method is signi®cantly lower than the corresponding
numbers from the DA and original KinFu methods.
The reason for this reduction is the direct correlation
between the model quality and the pose-estimation
accuracy (Javan Hemmat et al., 2014b).

Another quantitative metric for model quality is
the endurance of an algorithm until the ®rst reset oc-
currence. For this metric, the DASS algorithm shows
a higher performance and is able to sustain more than
twice longer than the original KinFu algorithm.

An interesting ®nding which has revealed during
the process, is the level of continuity of the stereo
depth data over different surfaces. In contrast with the
Kinect as a depth sensor based on the IR-projection,
the depth frames extracted from stereo data could
be less continuous on featureless surfaces, while the
Kinect is able to prepare continuous data as far as the
surface is not black or shiny. On the other hand, for

�9�,�6�$�3�3�����������������,�Q�W�H�U�Q�D�W�L�R�Q�D�O���&�R�Q�I�H�U�H�Q�F�H���R�Q���&�R�P�S�X�W�H�U���9�L�V�L�R�Q���7�K�H�R�U�\���D�Q�G���$�S�S�O�L�F�D�W�L�R�Q�V
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Table 1: Pose-estimation accuracy: comparison of the number of resets and endurance of the DA, DASS and KinFu methods.
Higher reset rates indicate lower accuracy in the pose estimation. The pose-estimation accuracy is mutually dependent on the
3D model quality.

Method metric Statue 1 Statue 2 Statue 3 Average
KinFu number of reset(s) 3 1 1 1.67

endurance (frames) 1,811 2,996 544 1,783.67
DA number of reset(s) 3 1 1 1.67

endurance (frames) 2,195 2,995 544 1,911.33
improvement (%) 21.20 -0.03 0.00 7.06

DASS number of reset(s) 0 0 1 0.33
endurance (frames) 5,604 3,801 544 3,316.33
improvement (%) 209.44 26.87 0.00 78.77

Figure 1: Snapshots of the modern art statues and their corresponding depth frame extracted from stereo data. The depth
frames depict the closer depth information as darker points.

the surfaces with suf®cient visual features that absorb
or distract the IR projected patterns of the Kinect, the
stereo camera provides more continuous and smooth
depth data. This motivates a hybrid-sensing approach,
where both the Kinect and stereo sensors are deployed
in a single system setup, to increase reconstruction ro-
bustness of heterogeneous scenes.

5 CONCLUSIONS

We have experimented with the deployment of the
KinFu algorithm onto the depth input data obtained
from stereo sensors to enable 3D reconstruction of
outdoor scenes during daylight, which is an impos-
sible task with the Kinect sensor. We have evaluated

�(�Y�D�O�X�D�W�L�R�Q���R�I���'�L�V�W�D�Q�F�H���$�Z�D�U�H���.�L�Q�)�X���$�O�J�R�U�L�W�K�P���I�R�U���6�W�H�U�H�R���2�X�W�G�R�R�U���'�D�W�D
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Figure 2: Mesh snapshots obtained by different weighting strategies. Each column shows the result for one of the datasets.
(A) shows a converted depth image in the format of the standard Kinect. (B), (C), and (D) illustrate the reconstruction results
from the original KinFu, DA, and DASS methods, respectively. Note the model degradation in (B) compared to (C) and (D).
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the quality of 3D models reconstructed by the origi-
nal KinFu algorithm in comparison with our distance-
aware DA and DASS methods. The experiments have
revealed that the input from stereo sensors is valid
and suf®cient for KinFu-based algorithms, resulting
in an appropriate reconstruction of outdoor scenes.
We have also shown that by replacing the original
KinFu weighting strategy by distance-aware weight-
ing strategies, we obtain 3D models from stereo
data with higher quality and more accurate pose-
estimation values. In our experiments, the new strate-
gies increase the endurance of the reconstruction pro-
cess with a factor of two or more.

Comparing the depth data obtained from the
Kinect and stereo sensors, we have found that the
stereo camera is able to provide more continuous
depth data for scenes with suf®cient visual features
that interfere the IR patterns of the Kinect sensor, such
as black or shiny surfaces. Alternatively, the Kinect
can provide more continuous depth data for the sur-
faces with insuf®cient amount of visual features or
featureless surfaces, where stereo cameras are unable
to extract any depth information.

For future work, we plan experiments on ®nding
the optimal hybrid system capable of working in dif-
ferent environments in terms of the quantity and qual-
ity of visual and 3D features and intelligently fusing
the resulting data from depth sensor and stereo cam-
era, based on the scene con®guration and features.
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